Morfoanatomía Foliar del Huizache Vachellia farnesiana (L.) Wright y Arn.

Marco A. Alvarado-Vázquez*, Alejandra Rocha-Estrada y Sergio M. Salcedo-Martínez

Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas Av. Pedro de Alba s/n, Cd. Universitaria, 66455 San Nicolás de los Garza, N.L. México.

*Autor para correspondencia: marco.alvaradovz@uanl.edu.mx

Resumen

Se describe la morfología y anatomía de los foliolos de *Vachellia farnesiana*, destacando características de adaptación a hábitats áridos y semiáridos; esto mediante técnicas de maceración, transparentación e histología en parafina. Encontrando que la hoja del huizache presenta características que la hacen particularmente adaptable a los ambiente áridos y semiáridos, tales como hojas relativamente pequeñas, gruesas, algo revolutas, cutícula gruesa y con estriaciones cuticulares, principalmente en el haz; abundancia de tricomas en ambas superficies, más desarrollados en el envés; mesófilo con distribución isolateral, con dos capas de empalizada hacia el haz y una hacia el envés; estomas sólo en el envés, no muy abundantes y de forma casi circular.

Palabras clave: huizache, hojas, foliolos, tricomas, parénquima empalizada, parénquima esponjoso, Nuevo León, México

Abstract

The morphology and anatomy of *Vachellia far*nesiana leaflets are described, highlighting adaptive characteristics to arid and semi-arid habitats using maceration, translucency, and paraffin histology techniques. The huizache leaf is found to have characteristics that make it particularly adaptable to arid and semi-arid environments, such as relatively small, thick, somewhat revolute leaves, thick cuticle with cuticular striations, mainly on the upper surface; abundant trichomes on both surfaces, more developed on the underside; mesophyll with isolateral distribution, with two palisade layers on the upper surface and one on the underside; stomata only on the underside, sparse and almost circular in shape.

Keywords: huizache, leaves, leaflets, trichomes, palisade parenchyma, spongy parenchyma, Nuevo León, Mexico

Introducción

Las principales zonas áridas y semiáridas del mundo se distribuyen a lo largo de 2 cinturones que pasan por los trópicos de Cáncer y Capricornio, comprendiendo una superficie de 28 millones de km² equivalente al 19% de la superficie total del planeta (Foroughbakhch *et al.*, 1994), en México ocupan más de 90 millones de hectáreas más del 40% del territorio nacional (Zerecero Leal, 1981).

Una de las especies que vive en las zonas áridas y semiáridas es *V. farnesiana* (Fabaceae), conocido comúnmente como huizache, es una planta de la cual se puede obtener harina, miel, goma, carbón, tiene uso medicinal, artesanal, forrajero y ornamental (Alvarado Vázquez, 1997; Rocha Estrada *et al.*, 1998;

Villarreal Quintanilla y Estrada Castillón, 2008; Reséndiz Flores et al., 2016; Pérez Cruz et al., 2022; Magaña Magaña et al., 2023). Por otro lado, la familia Fabaceae ha sido objeto de estudio por varios investigadores, entre los cuales destacan Metcalfe y Chalk (1950), quienes describen la morfología y anatomía de los órganos vegetativos de las leguminosas; por su parte Barrientos Ramírez et al. (2012), evalúan las características del fruto del huizache para su posible uso en curtiduría o alimentación animal.

Biradar y Rachetti (2013), realizaron extracción de metabolitos en cromatografía de capa fina de diferentes partes de la acacia, esto con la finalidad de ser aplicados en el área de salud. Erkovan *et al.* (2016), hacen una revisión general de esta especie considerando la descripción, su biología general y usos; así como las interacciones bióticas y abióticas en el manejo de la dinámica de la población y comunidad.

Material y métodos

El material vegetal se colectó en el municipio de China, Nuevo León, entre los paralelos 25°28′y 25°26′de latitud norte y los meridianos 99°17′y 99°15 de longitud oeste, y se encuentra en la Provincia de la Planicie Costera del Golfo dentro de la Región Xerofítica Mexicana (Rzedoswski, 1981). El clima es semiseco cálido CBS, (h′) hx′ (García, 2004); la precipitación media anual es del orden de los 500 mm (INEGI, 1986). De acuerdo con las cartas de vegetación de DETENAL (1978), la vegetación es del tipo matorral espinoso tamaulipeco.

Se colectaron muestras de 5 plantas de *V. farnesiana* (Figura 1), los ejemplares están depositados en el herbario de la Facultad de Ciencias Biológicas (UNL). Se tomaron muestras de hoja de las 5 plantas (seleccionándose hojas adultas y con una madurez adecuada), se les aplicaron las técnicas de maceración con los métodos de Jeffrey y Schultz (Curtis, 1986), transparentación con los métodos de Foster y

Figura 1. Huizache *V. farnesiana*, mostrando sus hojas, foliolos y flores amarillas en cabezuelas

Dizeo Strittmater (D'Ambrogio de Argüeso, 1986) y cortes en parafina de acuerdo con Johansen (1940). Cada una de estas técnicas permitió conocer diferentes aspectos de la morfología y anatomía foliar del huizache, además se realizaron 50 mediciones para cada tipo de célula o tejido.

Los criterios para la descripción de los tejidos fueron básicamente los de Metcalfe y Chalk (1950) y Radford *et al.*, (1974). Para los patrones de nerviación se utilizó la clasificación de Hickey (1973), para los estomas se siguió a Baranova (1992).

Resultados y Discusión Morfología

Hojas compuestas, 3-8 cms de longitud, 2-6 pares de pinnas. Foliolos numerosos, de forma linear oblonga, color gris verdoso, 2-3.9 mm de longitud y 0.6-1.1 mm de ancho; foliosos glabros excepto por unos pocos tricomas simples en los bordes inferiores (Tabla 1, Figura 2d).

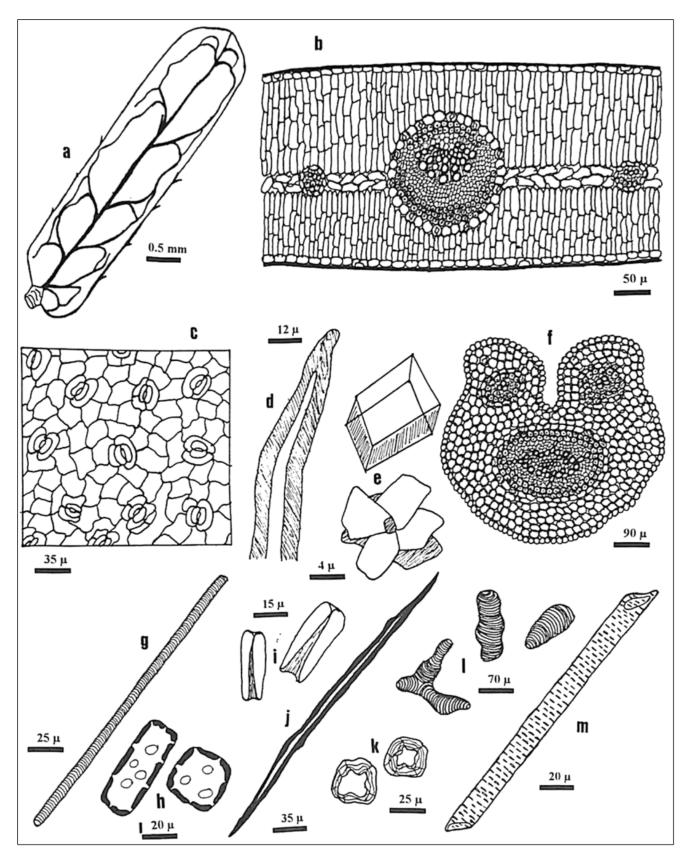


Figura 2. Vachellia farnesiana (L.) Wight y Arn. a, morfología y nerviación del foliolo; b, corte transversal del foliolo; c, epidermis del haz y envés; d, tricoma; e, cristales de oxalato de calcio; f, corte transversal del peciolo; g, vaso helicoidal; h, células del parénquima del xilema; i, macroesclereidas; j, fibra; k, braquiesclereidas; l, traqueidas helicoidales; m, vaso escalariforme.

Tabla 1. Valores promedio (± Desviación Estándar), máximos y mínimos de variables morfoanatómicas estudiadas en los foliolos del huizache.

Variable	Media ± D.E. (µm)	Máx. (μm)	Mín. (µm)
Longitud del foliolo (mm)	2.60±0.35	3.90	2.00
Ancho del foliolo (mm)	0.89±0.13	0.60	1.10
Grosor del foliolo (mm)	224.85±48.53	353.85	141.54
Grosor de cutícula en haz	4.15±1.13	6.40	2.56
Grosor de cutícula en envés	4.40±1.05	5.12	2.56
Longitud de células tabulares en haz	38.25±8.87	64.00	23.04
Longitud de células tabulares en envés	22.63±3.89	30.72	15.36
Ancho de células tabulares en haz	19.61±3.44	25.60	12.80
Ancho de células tabulares en envés	12.29±2.31	17.92	7.68
Altura de células epidérmicas en el haz	12.46±1.42	15.36	10.24
Altura de células epidérmicas en el envés	9.32±1.20	11.52	7.68
Longitud de células epidérmicas de la nervadura	31.85±3.68	37.12	25.60
Ancho de las células epidérmicas de la nervadura	13.67±1.15	15.36	12.80
Longitud de células oclusivas en el haz	15.05±1.40	17.92	12.80
Ancho de células oclusivas en el haz	13.88±0.88	15.36	12.80
Longitud de células oclusivas en el envés	20.28±3.28	28.16	15.36
Ancho de células oclusivas en el envés	12.85±2.35	15.36	7.68
Número de estomas/mm² en el haz	162.00±35.47	220.00	9.00
Número de estomas/mm² en el envés	171.60±35.08	230.00	100.00
Longitud de tricomas	87.45±21.48	128.00	64.00
Ancho de tricomas	10.29±2.26	15.36	7.68
Longitud de células de parénquima empalizada	43.73±6.48	53.76	35.84
Ancho de células de parénquima empalizada	7.73±1.59	10.24	5.12
Longitud de células de parénquima esponjoso	15.46±3.32	23.04	10.24
Ancho de células de parénquima esponjoso	10.39±2.23	15.36	7.68
Longitud de céls. de parénquima no fotosintético del xilema	47.10±14.89	97.28	23.04
Ancho de céls. de parénquima no fotosintético del xilema	15.57±4.73	28.16	10.24
Longitud de fibras	324.33±160.57	788.58	131.43
Ancho de fibras	10.09±2.77	17.92	5.12
Longitud de braquiesclereidas	28.37±5.58	43.52	20.48
Ancho de braquiesclereidas	16.69±4.19	30.72	7.68
Longitud de macroesclereidas	32.41±6.78	48.64	20.48
Ancho de macroesclereidas	12.60±1.21	15.36	10.24
Longitud de vasos escalariformes	154.52±41.87	230.40	64.00
Ancho de vasos escalariformes	53.97±22.74	120.32	20.48
Longitud de vasos helicoidales	211.87±63.67	422.40	79.36
Ancho de vasos helicoidales	11.93±2.39	17.92	7.68
Longitud de traqueidas helicoidales	141.41±40.09	230.40	79.36
Ancho de traqueidas helicoidales	15.51±3.51	23.04	7.68
Número de cristales/mm²	389.60±23.00	420.00	350.00
Diámetro de cristales	10.96±1.81	12.80	7.68

Venación tipo camptódroma, llegando a ser casi eucamptódroma ya que los nervios secundarios se van haciendo menos conspicuos hacia el margen y se interconectan con otros sin formar arcos visibles, pero algunas ramificaciones terminan libremente, además de presentar pocas venas secundarias (Tabla 1, Figura 2a).

El foliolo es grueso con un espesor de 224.85 μm, a este respecto Smith y Nobel (1978) mencionan que el grosor está relacionado con las altas temperaturas, ya que estas favorecen la formación de hojas más pequeñas y gruesas.

Epidermis

Esta es uniestratificada, con un grosor en el haz de $12.29~\mu m$, en el envés es ligeramente más delgada, la cutícula tiene un grosor promedio de $4.15~\mu m$ en el haz y $4.40~\mu m$ en envés (Tabla 1, Figura 2b). Las células tabulares son poliédricas de 4-7 lados, similares en forma en el haz y envés, aunque más grandes en el haz $(38.25~\mu m)$ que en el envés $(22.63~\mu m)$.

Los estomas se presentan en ambas superficies, son principalmente de tipo paracítico (Figura 2c), aunque hay algunos de apariencia anomocítica, las células subsidiarias son de tamaño algo menor a las tabulares.

Cabe mencionar que algunas de las subsidiarias presentan divisiones transversales u oblicuas, lo que da un mayor número de células anexas. Las células oclusivas en el haz tienen una longitud promedio de $15.05~\mu m$ y una anchura de $13.88~\mu m$, en tanto que en el envés miden $20.28~\mu m$ y $12.85~\mu m$ de ancho y largo, respectivamente. Con respecto al número de estomas tenemos que en el haz hay $162~estomas/mm^2$ y en el envés $171.60~estomas/mm^2$ (Tabla 1).

Mesófilo

Parénquima en arreglo isolateral, es decir, parénqui-

ma en empalizada hacia ambos lados y esponjoso en el centro (Figura 2b). El parénquima en empalizada presenta células delgadas y alargadas con arreglo muy compacto 3-4 capas de células hacia cada lado, aunque el conjunto de capas del haz es más grueso.

Las células de empalizada tienen una longitud promedio de 43.73 µm y un ancho de 7.73 µm. El parénquima esponjoso está restringido a una banda muy angosta en el centro del foliolo, tiene una estructura compacta y sin espacios aéreos; sus células son algo redondas con 15.46 µm de longitud y 10.39 µm de ancho. Se sabe que la hoja de tipo isolateral y el aumento en la cantidad o número de capas de tejido de empalizada son características típicas xeromórficas (Hull y Bleckman, 1977; Bokhari y Hedge, 1977; Fahn, 1978; Rudall, 1979 y 1980; Johonson, 1980). No se presenta colénquima o parénquima no fotosintético alrededor de los haces vasculares.

Haces vasculares

Se aprecia un haz vascular central y haces secundarios en poca cantidad (Figura 2b), la disminución en el número de haces principales ha sido reconocido por Dehgan (1982) como una adaptación en las plantas de zonas áridas para economizar agua, por su parte Smith y Nobel (1986) mencionan que existe una relación lineal entre el área superficial de la hoja y el número de haces vasculares, por lo que si las xerófitas tienden a disminuir el tamaño de sus hojas es de esperarse que también disminuya el número de haces principales.

El xilema se encuentra orientado hacia el haz y el floema hacia el envés. Además, existe hacia afuera del xilema y floema casquetes de fibras. La porción xilema-floema es aproximadamente 1:1, el haz vascular está rodeado por una vaina de células parenquimáticas, estas células presentan un contenido oscuro y muchas de ellas tienen cristales de tipo rom-

boédrico, de una longitud promedio de 10.96 μ m (Tabla 1, Figura 2e). Se aprecia también la presencia de macroesclereidas (Figura 2i), cuya longitud es de 32.41 μ m y braquiesclereidas (28.37 μ m de longitud, Figura 2k). Los vasos son del tipo helicoidal y escalariforme (Figura 2g y m), los helicoidales tienen una longitud mayor (211.87 μ m) que los escalariformes (154.42 μ m); los escalariformes son escasos, lo mismo que las braquiesclereidas y macroesclereidas.

Además de estos elementos conductores encontramos traqueidas helicoidales no muy abundantes (141.41 μ m de longitud y 15.51 μ m de ancho, Figura 2I). Las fibras son de paredes gruesas, pocas punteaduras y una longitud de 324.33 μ m (Figura 2j). Células de parénquima poco abundantes.

Peciolo

En sección transversal tiene una forma cilíndrica, con un profundo canal en la parte superior, formando dos alas (Tabla 1, Figura 2f). La epidermis y cutícula son similares a las de los foliolos, prácticamente es glabro.

El pecíolo presenta un haz vascular central y dos secundarios localizados en las alas. En el haz el xilema se encuentra ubicado en el centro del haz vascular central y alrededor se encuentra el floema, el cual es atravesado por 5-6 brazos de xilema que nacen del centro. Hacia afuera del xilema y floema se encuentran anillo de 2-3 capas de fibras y alrededor una capa de células parenquimáticas que contienen en su mayoría cristales de oxalato de calcio, romboédrica.

Los haces secundarios son similares excepto que el xilema no tiene brazos. En las capas de parénquima adyacentes a la epidermis, muchas células parenquimáticas tienen cristales romboédricos, aunque algunas otras tienen de tipo macla.

Conclusiones

La morfoanatomía de las hojas del huizache presentaron características que les permiten ser adaptables a los ambientes áridos y semiáridos, tales como foliolos pequeños y gruesos, cutícula gruesa principalmente en el haz, abundantes tricomas en ambas epidermis, mesófilo isolateral y estomas sólo en la epidermis abaxial.

Referencias

Alvarado Vázquez M.A. (1997). Morfología y anatomía de la hoja de 10 especies de plantas de diferentes estratos del matorral xerófilo en el municipio de China, N.L., México. Tesis de licenciatura, Facultad de Ciencias Biológicas, UANL. 227.

Baranova M. (1992). Principles of comparative stomato-graphic studies of flowering plants. Bot Rev 5B: 49-99.

Barrientos Ramírez L., Vargas Radillo J.J., Rodríguez Rivas A., Ochoa Ruiz H.G., Navarro Arzate F., Zorrilla J. (2012). Evaluación de las características del fruto de huizache (*Acacia farnesiana* (L.) Willd.) para su posible uso en curtiduría o alimentación animal. Maderas y Bosques 18(3): 23-35.

Biradar S.R., Rachetti B.D. (2013). Extraction of some secondary metabolites & thin layer chrimatography from different parts of *Acacia farnesiana* L. Journal of Pharmacy and Biological Science 7(5): 44-48.

Bokhari M.H., Hedge Y.C. (1977). Anatomical observations on a desert group of *Salvia* species. Notes Roy. Bot. Gard-Edin. 35(3): 377-389.

D'Ambrogio de Argüeso A. (1986). Manual de técnicas en histología vegetal. Primera edición. Editorial Hemisferio Sur, S.A. Argentina. 79.

Dehgan B. (1982). Comparative anatomy of the petiole and infrageneric relationships in *Jatropha* (Euphorbiaceae). Amer. J. Bot. 69(8): 1283-1295.

DETENAL. (1978). Carta edafológica. Clave G14C39. Escala 1:50000.

Erkovan H.I., Clarke P.J., Whalley R.D.B. (2016). A review on general description of *Vachellia farnesiana* (L.) Wight & Arn. Ataturk Univ. J. of the Agricultural Facultaty 47(1): 71-76

Fahn A. (1978). Anatomía vegetal. Primera edición. Editorial H. Blume. Madrid, España. 643.

Foroughbakhch P.R., Hauad L.A., Badii M.H., Flores A.E. (1994). Diversidad vegetativa de zonas semiáridas del noroeste de México. Calidad Ambiental 1(7): 23-25.

Franceschi V.R., Horner H.T. (1980). Calcium oxalate crystals in plants. The Botanical Review 46(4): 361-416.

García E. (2004). Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía, Universidad Autónoma de México. Series Libros, 6: 90.

Hickey L. (1973). Classification of the architecture of dicotyledonous leaves. Amer. J. Bot. 60: 17-33.

INEGI. (1986). Carta de efectos climáticos regionales. Clave G14-8 (Río Bravo). Escala 1:25000.

Johansen D.A. (1940). Plant microtechnique. McGraw -Hill Book Company, INC. New York and London. 522.

Johonson C.T. (1980). The leaf anatomy of *Leptospermum* Forst (Myrtaceae). Aust. J. Bot. 28: 77-104.

Magaña Magaña J.E., González Anchondo M.E., Terrazas Gómez M.I., Baray Guerrero M. del R. (2023). Caracterización de la goma de mezquite (*Prosopis* spp) vs huizache (*Vachellia farnesiana*) de la Región de Naica, Saucillo, Chihuahua. Revista Biológico-Agropecuaria Tuxpan 11(2): 6-17.

Metcalfe C.R., Chalk L. (1950). Anatomy of dicotyledons. Vol II. Claredon Press Oxford. 979-998.

Orians G.H., Solbrig O.T. (1977). Convergent evolition in warm deserts. Dowden Hutchison & Ross, Inc. Penssylvania, U.S.A. 52-105.

Pérez Cruz Y.M., Noveron Neri I.A., Hernández Rodríguez D., Hernández Mendo O. (2022). El huizache (*Vachellia farnesiana*): una alternativa no convencio-

nal en la alimentación ovina. Agro-Divulgación 2(4): 37-39.

Radford A.E., Dickison W.C., Nassey J.R., Bell C.R. (1974). Vascular plants sistematics. Primera edición. Editorial Harper & Row Publishers. New York, U.S.A. 877.

Ramos Álvarez C.H., González Medrano F. (1971). La vegetación de la zona árida veracruzana. Flora de Veracruz. Anales del Instituto de Biología, UNAM 43(1): 77-100.

Reséndiz Flores N.S., García Núñez R.M., Hernández Martínez M.A., Uribe Gómez M., Leos Rodríguez J.A. (2016). Goma de mezquite y huizache como alternativa de aprovechamiento en sistemas agroforestales. Revista Mexicana de Ciencias Agrícolas 16: 3251-3261.

Rocha Estrada A., Torres Cepeda T.E., González de la Rosa Ma. del C., Martínez Lozano S.J., Alvarado Vázquez M.A. (1998). Flora ornamental en plazas y jardines públicos del área metropolitana de Monterrey, México. SIDA 18(2): 579-586.

Rudall P. (1979). Leaf and twig anatomy of *Eriope* a xeromorphic genus of Labiatae. Botanical Journal of the Linnean Society 78: 157-180.

Rudall P. (1980). Leaf anatomy of the subtribe Hyptidinae (Labiatae). Botanical Journal of the Linnean Society 80: 319-340.

Smith W.K., Nobel P.S. (1978). Influence of irradiation soil water potential and leaf temperatura on leaf morphology of leaf morphology of a desert broad leaf, *Encelia farinosa* Gray (Compositae). Amer. J. Bot. 65(4): 429-432.

Sutclife J. (1977). Las plantas y el agua. Primera edición. Ediciones Omega. Barcelona, España. 2-63.

Villarreal Quintanilla J.A., Estrada Castillón E. (2008). Listados florísticos de México XXIV. Flora de Nuevo León. Instituto de Biología, UNAM. México D.F. 153.

Zerecero Leal G. (1981). Campos experimentales forestales. Ciencia Forestal 1: 4-16.